Important Notice:

\& The answer paper Must be submitted before 3 April 2021 at 5:00pm.
© The answer paper MUST BE sent to the CU Blackboard.
The answer paper Must include your name and student ID.

Answer ALL Questions

1. (15 points)

Let f be a C^{1}-function defined on $(0, \infty)$. For $x \in \mathbb{R}$, let $[x]$ denote the greatest integer not greater than x.
(i) Show that if a and b are positive integers with $a<b$, then

$$
\sum_{k=a}^{b} f(k)=\int_{a}^{b} f(x) d x+\int_{a}^{b} f^{\prime}(x)\left(x-[x]-\frac{1}{2}\right) d x+\frac{f(a)+f(b)}{2}
$$

(ii) Show that if $p \neq 1$, then

$$
\begin{aligned}
& \sum_{k=1}^{n} \frac{1}{k^{p}}=\frac{1}{n^{p-1}}+p \int_{1}^{n} \frac{[x]}{x^{p+1}} d x . \\
& * * * \text { See Next Page } * * *
\end{aligned}
$$

2. (15 points)

Let $\left(f_{n}\right)$ be a sequence of bounded functions defined on \mathbb{R}. Suppose that $f(x):=$ $\lim f_{n}(x)$ exists for all $x \in \mathbb{R}$.
(a) Show that

$$
\lim _{n} \frac{f_{1}(x)+\cdots+f_{n}(x)}{n}=f(x)
$$

for all $x \in \mathbb{R}$.
(b) If we further assume that $\left(f_{n}\right)$ converges uniformly to f on \mathbb{R}, does it imply that the sequence $\left(\frac{f_{1}+\cdots+f_{n}}{n}\right)$ converges uniformly to f on \mathbb{R} ?

3. (20 points)

Let f be a continuous function defined on $[a, b]$. Assume that the right derivative of f exists for every $x \in(a, b)$, that is, the limit $f_{+}^{\prime}(x):=\lim _{t \rightarrow 0+} \frac{f(x+t)-f(x)}{t}$ exists.
(i) If $f(b)<f(a)$, we define a function $h:(f(b), f(a)) \rightarrow \mathbb{R}$ by

$$
h(y):=\sup \{x \in(a, b): f(x)>y\} .
$$

Show that $f(h(y))=y$ for all $y \in(f(b), f(a))$.
(ii) Let $D:=\left\{x \in(a, b): f_{+}^{\prime}(x)>0\right\}$. Show that if $(a, b) \backslash D$ is countable, then f is increasing.

